Rad GTPase attenuates vascular lesion formation by inhibition of vascular smooth muscle cell migration.

نویسندگان

  • Mingui Fu
  • Jifeng Zhang
  • Yu-Hua Tseng
  • Taixing Cui
  • Xiaojun Zhu
  • Yan Xiao
  • Yongshan Mou
  • Hector De Leon
  • Mary M J Chang
  • Yasuo Hamamori
  • C Ronald Kahn
  • Yuqing E Chen
چکیده

BACKGROUND Rad (Ras associated with diabetes) GTPase is a prototypic member of a new subfamily of Ras-related GTPases with unique structural features, although its physiological role remains largely unknown. In the present study, we characterized the Rad function in vascular smooth muscle cells (VSMCs) and the influence of adenovirus-mediated Rad (Ad-Rad) gene delivery on vascular remodeling after experimental angioplasty. METHODS AND RESULTS We documented for the first time that neointimal formation using balloon-injured rat carotid arteries was associated with a significant increase in Rad expression as determined by immunohistochemistry and quantitative real-time reverse-transcriptase polymerase chain reaction. The levels of Rad expression in VSMCs were highly induced by platelet-derived growth factor and tumor necrosis factor-alpha. Morphometric analyses 14 days after injury revealed significantly diminished neointimal formation in the Ad-Rad-treated carotid arteries compared with Ad-GFP or PBS controls, whereas the mutated form of Rad GTPase, which can bind GDP but not GTP, increased neointimal formation. Overexpression of Rad significantly inhibited the attachment and migration of VSMCs. In addition, Rad expression dramatically reduced the formation of focal contacts and stress fibers in VSMCs by blocking the Rho/ROK signaling pathway. CONCLUSIONS Our data clearly identified Rad GTPase as a novel and critical mediator that inhibits vascular lesion formation. Manipulation of the Rad signaling pathway may provide new therapeutic approaches that will limit vascular pathological remodeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Response gene to complement 32 promotes vascular lesion formation through stimulation of smooth muscle cell proliferation and migration.

OBJECTIVE The objectives of this study were to determine the role of response gene to complement 32 (RGC-32) in vascular lesion formation after experimental angioplasty and to explore the underlying mechanisms. METHODS AND RESULTS Using a rat carotid artery balloon-injury model, we documented for the first time that neointima formation was closely associated with a significantly increased exp...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

Integrative Physiology and Experimental Medicine Response Gene to Complement 32 Promotes Vascular Lesion Formation Through Stimulation of Smooth Muscle Cell Proliferation and Migration

Objective—The objectives of this study were to determine the role of response gene to complement 32 (RGC-32) in vascular lesion formation after experimental angioplasty and to explore the underlying mechanisms. Methods and Results—Using a rat carotid artery balloon-injury model, we documented for the first time that neointima formation was closely associated with a significantly increased expre...

متن کامل

Platelet-Derived Growth Factor Induces Rad Expression through Egr-1 in Vascular Smooth Muscle Cells

BACKGROUND Ras associated with diabetes (Rad) inhibits vascular lesion formation by reducing the attachment and migration of vascular smooth muscle cells (VSMCs). However, the transcriptional regulation of Rad in VSMCs is unclear. METHODOLOGY AND PRINCIPAL FINDINGS We found that Platelet-Derived Growth Factor (PDGF)induced Rad expression in a time- and dose-dependent manner in rat aortic smoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 111 8  شماره 

صفحات  -

تاریخ انتشار 2005